Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences

نویسندگان

  • Hu Li
  • Renfu Shao
  • Nan Song
  • Fan Song
  • Pei Jiang
  • Zhihong Li
  • Wanzhi Cai
چکیده

Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequencing and Molecular Analysis of ATP 6 and ATP 8 of Mitochondrial Genome in Khorasanian Native Chickens

In order to perform breeding programs and improve production of native chickens, preserving genetic diversity in different areas of Iran is important due to the reduced available population. Genome sequencing is considered the most functional approach to determine the phylogeny relation between close populations. The aim of the present study was the evaluation of the phylogeny and genetic nucle...

متن کامل

Mitochondrial Genomes Provide Insights into the Phylogeny of Lauxanioidea (Diptera: Cyclorrhapha)

The superfamily Lauxanioidea is a significant dipteran clade including over 2500 known species in three families: Lauxaniidae, Celyphidae and Chamaemyiidae. We sequenced the first five (three complete and two partial) lauxanioid mitochondrial (mt) genomes, and used them to reconstruct the phylogeny of this group. The lauxanioid mt genomes are typical of the Diptera, containing all 37 genes usua...

متن کامل

Complete Mitochondrial Genome of the Free-Living Earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and Phylogeny of Polyneoptera

The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other k...

متن کامل

Molecular phylogeny of three desert truffles from Iran based on ribosomal genome

The ITS region including the 5.8S gene of rDNA of three desert truffle species were amplified using ITS4 and ITS1 primers. The ITS sequences were compared to those of other related authentic sequences obtained from GenBank. Among 12 specimens studied, seven isolates corresponded to Terfezia claveryi reported by other authors. Iranian T. claveryi specimens had an average similarity of 99.4% (ran...

متن کامل

The First Mitochondrial Genome of the Sepsid Fly Nemopoda mamaevi Ozerov, 1997 (Diptera: Sciomyzoidea: Sepsidae), with Mitochondrial Genome Phylogeny of Cyclorrhapha

Sepsid flies (Diptera: Sepsidae) are important model insects for sexual selection research. In order to develop mitochondrial (mt) genome data for this significant group, we sequenced the first complete mt genome of the sepsid fly Nemopoda mamaevi Ozerov, 1997. The circular 15,878 bp mt genome is typical of Diptera, containing all 37 genes usually present in bilaterian animals. We discovered in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015